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In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak
in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus
(A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in
chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days
postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds.
The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from
North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglu-
tinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonho-
mologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza
(LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into
chickens 3 weeks prior to challenge. All H7 vaccines tested provided >90% protection against clinical disease after challenge and
decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological conse-
quences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective pro-
grams of vaccination against this virus in poultry.

Avian influenza (AI) is a viral disease of poultry that can occur
in many different bird species, and highly pathogenic (HP)

forms of the virus result in rapid mortality in susceptible poultry.
AI virus (AIV) is classified in the family Orthomyxoviridae, genus
Influenza A virus (type A), and contains a negative-sense, seg-
mented RNA genome (1). Antigenically, 16 hemagglutinin (HA)
subtypes (H1 to H16) and nine neuraminidase subtypes (N1 to
N9) have been detected in birds (2–4). Wild aquatic birds, includ-
ing ducks, are the natural reservoir for low-pathogenic (LP) AIV,
which typically does not cause significant disease or mortality (5).
AIV is shed through the intestinal tract of these birds and is pri-
marily spread by fecal contamination of the water or directly to
other birds. Although wild birds do not normally get sick from
AIV, they have on occasion transmitted the virus to domesticated
birds, including chickens, ducks, and turkeys, which are all sus-
ceptible to AIV (6). The introduction of H5 or H7 LPAI virus into
poultry may result in the emergence of HPAI viruses through
various genetic changes of the HA gene (7–11).

H7N3 AIV has been identified in wild birds throughout the
world, implicating migration and/or contact (direct or indirect)
with other susceptible avian species as the most likely mode of
transmission to commercial poultry. Multiple outbreaks of H7N3
HPAI in commercial poultry have been reported in the Americas
over the last decade. In May 2002, an outbreak at a broiler breeder
farm in Chile was identified and later controlled by depopulation
and strict biosecurity (12). Outbreaks of H7N3 HPAI in commer-
cial poultry operations in British Columbia and Saskatchewan,
Canada, in 2004 and 2007, respectively, were reported to be caused
by LPAI virus precursors from migratory waterfowl (13–15).

In June of 2012, the isolation of an H7N3 HPAI virus was
reported in commercial egg layer chickens in the state of Jalisco,
Mexico, a poultry-dense region responsible for approximately
55% of Mexican table egg production (16). Initial reports in three
layer farms from Acatic and Tepatitlan resulted in the establish-
ment of a 40-km quarantine zone, although the virus would later
be reported in poultry farms outside the zone. Initial phylogenetic
characterization of the HA gene from H7 viruses has demon-
strated three genetically distinct clusters based on the geography
of the isolate (17). The Mexican isolate was determined to be
closely related to wild bird isolates from North America. Although
the origin of the Mexican virus is unknown, it is suspected that an
LP AIV from wild birds infected chickens and mutated into an HP
form. To date, this outbreak has resulted in the death of over 22
million birds through either disease or culling, at an estimated cost
of over $720 million (16).

The current studies were undertaken to characterize the patho-
biology of an H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012
[Ck/J/12]) in poultry and determine the protection against this
virus gained through vaccination of chickens with U.S. and Mex-
ican H7 LPAI inactivated viruses. For vaccine studies, U.S. isolates
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chosen on the basis of available H7 strains previously used for
vaccination and a Mexican H7N3 LPAI virus isolate that was ob-
tained from a Cinnamon Teal duck in 2006 were used (18).

MATERIALS AND METHODS
H7 viruses. A total of six different H7 AIVs were used in these studies,
including four isolates from the United States and two isolates from Mex-
ico. The low-pathogenic H7 U.S. vaccine isolates included A/chicken/
New York/12273-11/1999 (Ck/NY/99) H7N3, A/quail/Pennsylvania/
20304/1998 (Q/PA/98) H7N2, A/turkey/Oregon/1971 (Tk/OR/71) H7N3, and
A/turkey/Utah/24721-10/1995 (Tk/UT/95) H7N3. Both of the turkey iso-
lates, Tk/OR/71 and Tk/UT/95, are USDA-approved master seed strains
for H7 vaccines for poultry. The Mexican isolates included the LPAI virus
A/Cinnamon Teal/Mexico/2817/2006 (CT/MX/06) H7N3 and HPAI vi-
rus A/chicken/Jalisco/CPA1/2012 (Ck/J/12) H7N3, which was used as the
challenge virus. All viruses were propagated in specific-pathogen-free
(SPF) embryonated chicken eggs according to standard procedures (19).
Allantoic fluid containing virus was harvested as antigen for vaccine for-
mulation or titration of HPAI challenge virus. All experiments using
H7N3 HPAI viruses, including work with animals, were reviewed by the
institutional biosecurity committee and were performed in biosecurity
level 3 enhanced facilities at SEPRL, with the additional precautions that
all personnel were vaccinated against seasonal influenza and were re-
quired to wear a powered air protection respirator with a high-efficiency
particulate air (HEPA)-filtered air supply (3M, St. Paul, MN).

Vaccine preparation. Individual H7 vaccines were produced with the
five LPAI virus isolates described above following growth in SPF eggs and
harvesting of allantoic fluid. Following �-propiolactone inactivation of
allantoic fluid, each vaccine virus was diluted to provide an HA concen-
tration of 512 per 0.5 ml when mixed (30/70) with Montanide ISA VG70
oil emulsion (Seppic Inc., Fairfield, NJ) according to the manufacturer’s
recommendations (20).

Chickens. For all experiments, SPF chickens (White Rock [meat type]
and White Leghorn [egg layer type]) of both sexes were obtained from and
housed at the Southeast Poultry Research Laboratory in a biosafety level 2
facility and were transferred to a biosafety level 3E facility for vaccination
and challenge. Birds were maintained in HEPA-filtered isolation cabinets
with feed and water ad libitum. All bird experimental procedures were
approved and performed under the guidelines of the Southeast Poultry
Research Laboratory Institutional Animal Care and Use Committee.

Experiment I. Fifty 7-week-old SPF White Rock chickens were di-
vided into five groups of 10 and wing banded for identification. Birds in
groups 1 to 4 received 0.5 ml of Ck/NY/99, Q/PA/98, Tk/OR/71, or Tk/
UT/95 vaccine delivered via the subcutaneous route, respectively. Birds in
group 5 received a sham vaccination with allantoic fluid from uninocu-
lated SPF embryos as described above. At 3 weeks after vaccination, all
birds were bled to determine prechallenge antibody titers, and each bird
was immediately challenged with 106 50% egg infective doses (EID50s) of
the HPAI Ck/J/12 virus isolate via the intranasal route. The challenge dose
was confirmed by backtitration in embryonated eggs. Oropharyngeal and
cloacal swab samples were collected on days 2 and 4 postchallenge (p.c.) to
determine virus shedding. Following challenge, the groups were moni-
tored twice daily for 14 days for clinical signs, and those with severe clin-
ical signs of disease (e.g., an inability to reach feed or water) were hu-
manely euthanized by the approved protocol and counted as mortalities
for that day. Serum was collected from the surviving birds on day 14 p.c.,
and the birds were then humanly euthanized.

Experiment II. Twenty 2-week-old SPF White Leghorn chickens were
divided into two groups of 10 and wing banded for identification. Birds in
group 1 received 0.5 ml of CT/MX/06 vaccine, and birds in group 2 re-
ceived 0.5 ml of sham vaccine delivered via the subcutaneous route. At 3
weeks after vaccination, all birds were bled to determine prechallenge
antibody titers, and each bird was immediately challenged with 106 EID50s
of the Ck/J/12 HPAI virus isolate via the intranasal route. Swab samples
were collected and processed as described above on days 2 and 4 p.c.

Following challenge, groups were monitored twice daily for 14 days for
clinical signs, and those with severe clinical signs of disease were humanely
euthanized by the approved protocol and counted as mortalities for that
day. Serum was collected from the surviving birds on day 14 p.c., and the
birds were then humanely euthanized.

Serology. Serum was obtained from all birds pre- and postchallenge
and tested by hemagglutination inhibition (HI) assay using chicken red
blood cells. The HI assay was performed using inactivated Ck/J/12 HPAI
virus as antigen according to standard procedures (21). Titers were calcu-
lated as the highest reciprocal serum dilution providing complete hemag-
glutination inhibition. Serum titers of 1:8 (3 log2 units) or lower were
considered negative for antibodies against avian influenza virus.

Virus titrations. Virus detection from oropharyngeal and cloacal
swabs on days 2 and 4 postchallenge was performed as described previ-
ously (22). Briefly, swab specimens were collected from each bird and
placed into 2 ml of brain heart infusion (BHI) broth with antibiotics
(1,000 units/ml of penicillin G, 200 �g/ml of gentamicin sulfate, and 4
�g/ml of amphotericin B; Sigma Chemical Company, St. Louis, MO), and
0.2 ml was injected into 9- to 11-day-old embryonated SPF chicken eggs.
The inoculated eggs were incubated at 37°C for 72 to 96 h, and allantoic
fluid was harvested and screened for the presence of AIV by the HA test
following standard procedures (23). Virus titers are reported as the log10

numbers of EID50s/ml, and the threshold of detection was 100.9 EID50/ml.
Portions of the brain, lung, muscle, heart, and spleen as well as oral and

cloacal swab specimens were also collected in BHI medium with antibiot-
ics and stored at �70°C until use. Titers of infectious virus were deter-
mined by weighing and homogenizing the tissues and diluting them 10-
fold in BHI to a 10% (wt/vol) concentration. Tissue homogenate
supernatants (100 �l) were inoculated into the allantoic sac of chicken
embryos, and virus titers were determined as described above. The thresh-
old of detection for virus titers in tissues was 101.9 EID50s/g of tissue.

Sequence analysis. Viral RNA was extracted from infected chicken
allantoic fluid using a MagMax AI/ND viral RNA isolation kit (Life Tech-
nologies Corp., Foster City, CA). The extracted RNA was amplified by
reverse transcription-PCR using gene-specific primers and a One-Step
amplification kit (Qiagen, Corp., Valencia, CA). The primers are available
upon request. Cycle sequencing was performed directly on amplicons
with a BigDye Terminator kit (Applied Biosystems, Foster City, CA), and
the sequences were run on an ABI 3730 DNA analyzer (Applied Biosys-
tems, Foster City, CA) and assembled with the SeqMan (version 10.0)
program (DNAStar, Madison, WI). Sequences were aligned with the
Clustal V program (Lasergene, version 10.0; DNAStar, Madison, WI), and
phylogenetic analysis for the H7 gene was performed with the PAUP*
program, version 4.0b10 (Sinauer Associates, Inc., Sunderland, MA), us-
ing the maximum parsimony tree-building method with heuristic search
and 500 bootstrap replicates.

Pathology. Clinical signs from sham-vaccinated control chickens
challenged with the H7N3 HPAI virus were recorded daily. Two birds
from the first study (age, 10 weeks) and two from the second study (age, 5
weeks) were euthanized at 2 days p.c., and gross lesions were recorded.
The following tissues were collected in 10% neutral buffered formalin
solution to evaluate microscopic lesions and the extent of virus replication
in tissues: nasal cavity, trachea, lung, air sac, comb, eyelid, heart, brain,
esophagus, proventriculus, ventriculus, duodenum, jejunum, cecal ton-
sils, pancreas, liver, spleen, bursa, thymus, Harderian gland, kidney, go-
nads, adrenal gland, and muscle from the left thigh.

Histopathology and immunohistochemistry (IHC). Samples were
prepared as previously described (24). Briefly, collected tissues were fixed
by submersion in 10% neutral buffered formalin and embedded in paraf-
fin. In addition, the nasal cavity was decalcified for 2 days. Sections were
made at 5 �m and were stained with hematoxylin-eosin (HE). A serial
section was immunohistochemically stained by first microwaving the sec-
tions in antigen retrieval Citra solution (Biogenex, San Ramon, CA) for
antigen exposure. A 1:2,000 dilution of a mouse-derived monoclonal an-
tibody (P13C11) (25) specific for type A influenza virus nucleoprotein
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(developed at the Southeast Poultry Research Laboratory, USDA) was
applied, and the mixture was allowed to incubate overnight at 4°C (26).
The primary antibody was then detected by the application of biotinylated
goat anti-mouse IgG secondary antibody using a biotin-streptavidin de-
tection system (supersensitive multilink immunodetection system; Bio-
genex). Fast Red TR (Biogenex) served as the substrate chromogen, and
hematoxylin-eosin was used as a counterstain. All tissues were systemat-
ically screened for microscopic lesions. Lesions were scored as follows: �,
no lesions; �, mild lesions; ��, moderate lesions; ���, severe lesions.
The intensity of viral antigen staining in each section was scored as fol-
lows: �, no antigen staining; �, infrequent staining; ��, common stain-
ing; ���, widespread staining.

Statistical analysis. Kaplan-Meier survival curves were generated with
Prism, version 5, software (GraphPad Co., San Diego, CA). The Mantel-
Cox log-rank test was used to compare survival curves between two ex-
perimental groups (Prism 5). Statistical differences in the mean HI titers
and standard errors were analyzed using the Tukey one-way analysis of
variance (ANOVA) (Prism 5). The Fisher exact test was used for pairwise
comparison of the group mean HI titer or the frequency of virus isolation
between groups (SigmaStat, version 2.0.3; SPSS Inc., Chicago, IL). All
statistical tests were performed by consideration of a P value of �0.05 to
be significant.

RESULTS
Clinical signs of disease. Nonvaccinated (sham-vaccinated)
chickens inoculated with the Ck/J/12 HPAI H7N3 virus in both
experiments had similar clinical signs and 100% mortality. Some
birds showed nonspecific clinical signs, including ruffled feathers,
lethargy, anorexia, and prostration, and some birds presented

with severe listlessness, respiratory distress, swollen head, and cy-
anotic or hemorrhagic comb, wattles, and legs (Fig. 1a to c). Some
birds died without showing clinical signs (peracute disease). Birds
that were found dead had swollen heads and focal hemorrhages in
the comb, wattle, and footpads. In some of the birds there were
hemorrhages on the surface of the cloaca. Birds that were still alive
were lethargic, recumbent, and in some cases trembling. Clinical
signs of respiratory distress were prominent in some dying birds
and included severe dyspnea and gasping, in association with fa-
cial edema; swelling of the infraorbital sinuses; and conjunctivitis.
Copious nasal discharge was also observed. Commonly present
were swollen and cyanotic combs and wattles and diarrhea.

Gross lesions. Two sham-vaccinated chickens per experiment
were necropsied and examined at 2 days p.c. Similar lesions were
observed in all 4 chickens examined, and these lesions were con-
sistent with HPAI. A female and a male were examined in each
experiment. Grossly, there was congestion and edema of the head
and swollen and cyanotic combs, wattles, and legs. The sinuses,
nasal cavity, larynx, and trachea were congested and had abundant
mucus (Fig. 1d). The lungs were edematous and congested, and
the air sacs were thickened. Petechial hemorrhages were observed
on the breast and thigh muscles and in the epithelial fat of the
heart (Fig. 1e). The proventricular glands were swollen, and the
thymus was enlarged and often had petechia. In some chickens,
the kidneys were enlarged with parenchymal pallor and accentu-
ated lobular surface architecture. Mild to moderate splenomegaly

FIG 1 Lesions in chickens following experimental infection with the Mexican H7N3 HPAI virus detected at 2 days postinoculation. (a) Prostration and edema
of periorbital tissues; (b) subcutaneous hemorrhage of wattles and comb and conjunctivitis and swelling of periorbital area; (c) subcutaneous hemorrhages of leg
shanks; (d) mucous in larynx; (e) petechial hemorrhages on breast muscle.
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with parenchymal mottling or petechial hemorrhages was ob-
served in all the birds. Pancreatic lesions characterized by multi-
focal necrotic areas were also present, as were hemorrhages on the
duodenal loop and the cecal tonsils. Hemorrhages were also pres-
ent on the brain surface of one of the younger birds.

Microscopic lesions and virus antigen staining in tissues. The
results for histologic lesions and viral antigen staining in tissues
are shown in Table 1 and Fig. 2. Viral antigen staining was present
in multiple tissues of chickens infected with the virus, indicating
systemic infection. Microscopic lesions were similar in the four
birds that were examined, with minor variations in severity.

In the respiratory system, severe, diffuse catarrhal rhinitis and
mild to moderate tracheitis were present in all birds examined.
Submucosal vasculitis with mild necrosis and infiltration of het-
erophils, macrophages, plasma cells, and lymphocytes was present
in all birds examined. In the lungs, there was moderate to severe
multifocal interstitial pneumonia with infiltrating heterophils,
lymphocytes, and macrophages. Multifocal areas of necrosis and
mild interstitial edema were also present with moderate airsaccu-
litis, characterized by multifocal thickening with edema and infil-
tration of moderate numbers of lymphocytes, macrophages,
plasma cells, and heterophils.

Severe, diffuse, heterophilic, and histiocytic inflammation of
the eyelid and comb was common in all birds. There were mod-

erate to severe edema and congestion in the dermis and multifocal
moderate heterophilic dermatitis, characterized by infiltration of
moderate numbers of heterophils and macrophages; multifocally,
endothelial cells were necrotic or hypertrophic.

In the heart, mild, multifocal myocyte necrosis was present.
Lesions in the brains consisted of scattered, occasional neuronal
necrosis with gliosis. Lesions in the digestive tract were confined to
the lymphoid-associated tissues, including the esophageal-
proventricular junction, cecal tonsils, mucosa of the cecum and
jejunum, and Peyer’s patches of the small intestine. In the lamina
propria of the proventriculus there were moderate numbers of
infiltrating lymphocytes, plasma cells, macrophages, and hetero-
phils with multifocal small foci of necrosis. Mild degeneration of
individual pancreatic acinar cells was also observed.

In the liver, mild to moderate multifocal fibrinoid necrosis,
infiltration of heterophils and macrophages, and multifocal peri-
portal moderate lymphohistiocytic hepatitis were common.

In the spleen, there was moderate to severe depletion of the white
pulp with multifocal lymphocytic necrosis and diffuse moderate his-
tiocytic splenitis. In the thymus and cloacal bursa, mild to moderate,
diffuse lymphocyte depletion and necrosis were present in all birds.
The kidneys presented mild multifocal tubular necrosis.

By immunohistochemistry, viral antigen was detected in most
tissues, with comparable patterns being found in all four chickens

TABLE 1 Microscopic lesions and viral antigen distribution in tissues from chickens intranasally inoculated with the Mexican H7N3 HPAI virus
detected at 2 days p.c.a

Tissue
Histopathology
scoreb Lesions IHC scorec Cell types expressing virus antigen

Nasal cavity ��� Epithelial cell necrosis and desquamation, rhinitis,
sinusitis, lymphocytic infiltrate

�� Vascular endothelial cells, epithelial cells,
mononuclear cells, necrotic debris

Trachea �� Tracheitis, lymphocytic infiltrate ��� Vascular endothelial cells, epithelial cells, cellular
debris, cells of the tracheolateralis muscle

Lung �� to ��� Interstitial pneumonia, bronchitis, edema, congestion,
hemorrhage, necrosis, monocytic infiltrate

��� Epithelium of air capillaries, mononuclear cells,
necrotic debris

Air sac �� Airsacculitis, monocytic infiltrate ��� Epithelial and mononuclear cells
Comb ��� Edema, hemorrhages, necrosis ��� Vascular endothelial cells, mononuclear cells,

necrotic debris
Eyelid ��� Subcutaneous edema, epidermal and feather follicle

necrosis
��� Vascular endothelial cells, mononuclear cells,

feather follicle epithelium
Heart � Myocyte necrosis � Myocytes
Brain � to �� Neuronal necrosis, gliosis, encephalomalacia,

chromatolysis of the Purkinge cell layer,
lymphoplasmacytic infiltrate

� to �� Neurons, glial cells

Esophagus � � � Mononuclear cells in submucosa
Proventriculus �� Edema and inflammatory infiltration in submucosa ��� Mononuclear cells in submucosa
Ventriculus � � � Mononuclear cells in submucosa
Intestine � to �� Lymphohistiocytic infiltration in submucosa, hemorrhage,

epithelial necrosis
� Mononuclear cells in lymphoid-associated tissue,

vascular endothelial cells
Cecal tonsils �� Hemorrhage, lymphocyte depletion, necrosis �� Macrophages
Pancreas � Degeneration of individual pancreatic acinar cells � �
Liver �� Lymphohistiocytic hepatitis �� Kupffer cells, hepatocytes, necrotic debris, vascular

endothelial cells
Spleen ��� Lymphoid depletion, necrosis, splenitis, hyperplasia of

macrophage-phagocytic cells
�� to ��� Mononuclear cells, necrotic debris, vascular

endothelial cells
Thymus � to ��� Lymphocyte necrosis and apoptosis, lymphocyte depletion,

hemorrhage
� to ��� Histiocytes

Cloacal bursa � to �� Lymphocyte necrosis and apoptosis, lymphocyte depletion,
phagocytic hyperplasia, necrosis, hemorrhage

� to �� Mononuclear cells

Harderian gland � �� Mononuclear cells
Kidney � to � Tubular epithelial necrosis � to �� Tubular epithelial cells
Gonads � Necrosis, lymphoplasmacytic infiltrate � Mononuclear and interstitial cells
Adrenal gland � to ��� Necrosis, mononuclear infiltrate, hemorrhages � Corticotrophic and corticotropic cells
Muscle � Congestion � �
a Tissues were collected from 2 birds per age group (n � 4).
b Histologic lesion scores by HE staining: �, no lesions; �, mild lesions; ��, moderate lesions; ���, severe lesions.
c IHC staining scores: �, no antigen staining; �, infrequent staining; ��, common staining; ���, widespread staining.
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FIG 2 Histopathology and immunohistochemical staining for avian influenza virus antigen in tissues of chickens infected with the Mexican H7N3 HPAI
virus performed at 2 days postinoculation. Virus is stained red. (A) Nasal epithelium, showing severe necrotizing rhinitis with submucosal congestion and
edema and glandular hyperplasia. (Inset) Demonstration of viral antigen in the epithelial cells and debris, vascular endothelial cells, and infiltrating
mononuclear cells. (B) Trachea, showing congestion and lymphocyte, macrophage, and heterophil infiltration in the submucosa. (Inset) viral antigen
staining present in the vascular endothelial cells (arrow) and infiltrating macrophages (inset). (C) Lung, showing severe lymphoplasmacytic interstitial
pneumonia with necrosis (arrow). (Inset) Viral antigen staining in epithelium of air capillaries, mononuclear cells, and necrotic debris. (D) Cerebrum,
showing mild neuronal necrosis and focal gliosis (arrow). (Inset) Viral antigen staining in neurons and necrotic debris. (E) Comb, showing severe
congestion. (Inset) Viral antigen staining in vascular endothelial cells (arrow) and infiltrating mononuclear cells. (F) Eyelid, showing severe congestion.
(Inset) Viral antigen staining in vascular endothelial cells (arrow) and infiltrating mononuclear cells. (G) Spleen, showing splenitis, moderate lymphocyte
depletion, and cell death with heterophilic inflammation. (Inset) Viral antigen staining in mononuclear cells and necrotic debris. (H) Cecal tonsil,
showing moderate lymphocyte depletion and cell death with heterophilic inflammation. (Inset) Viral antigen staining in mononuclear cells and necrotic
debris. Magnifications, �400.
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(Table 1; Fig. 2). Virus antigen was often associated with histologic
lesions, although virus antigen was also present in areas without
detectable lesions. An interesting finding was that viral antigen
was detected in most endothelial cells in the nasal cavity, trachea,
eyelid, and comb, while in all other tissues viral antigen was de-
tected in only a few, individual endothelial cells. Staining for virus
antigen was also present in areas of necrosis and infiltrating
mononuclear cells in many tissues, including lymphoid tissues,
lung, brain, liver, and spleen. Virus antigen was also observed in
the parenchymal cells of some organs, including cardiac myocytes,
Kupffer cells, hepatocytes, microglial cells and neurons, lung cells,
kidney tubular epithelial and glomerular cells, cells in the feather
follicle epithelium, and infiltrating inflammatory cells.

Virus replication in tissues. Virus replication in brain, heart,
lung, spleen, and muscle tissue from sham-vaccinated chickens
following intranasal infection with the Ck/J/12 H7N3 HPAI virus
was examined at 2 days p.c. As shown in Table 2, high virus titers
were detected in all organs examined, indicating extensive sys-
temic viral replication, with the highest viral titers found in lung
(�106.8 EID50s per gram of tissue) and the lowest found in muscle
(�104.1 EID50s per gram of tissue).

Phylogenetic analysis. The complete coding sequences for all
eight gene segments of both Ck/J/12 and CT/MX/06 viruses were
determined and compared. The nucleotide sequence of Ck/J/12
virus had a high similarity of greater than 97% to the sequences of
wild bird viruses from North America in all eight gene segments by
BLAST analysis. However, in analyzing the individual genes, the
highest sequence similarity was not to the genes of a single virus,
but each gene was closest to the gene of different influenza viruses
of various hemagglutinin and neuraminidase subtypes. The CT/
MX/06 virus, the only H7 wild bird virus isolated in Mexico, also
had high similarity to other North American influenza viruses.
Although some relatedness exists between the CT/MX/06 virus
and the Ck/J/12 virus, the duck isolate was clearly not the precur-
sor virus. The nucleotide sequence relatedness between the CT/
MX/06 virus and the HPAI virus isolate varied from 90.5% to
98.1% for all gene segments examined (data not shown).

The hemagglutinin gene of Ck/J/12 virus had a 24-nucleotide
insert at the hemagglutinin cleavage site. On BLAST analysis, the
24 nucleotides had 100% sequence identity to chicken 28S rRNA
(GenBank accession numbers EF552813.1, AC147447.3, and
AC186855.3), indicating that the most likely source of the insert
sequence was the host. The nucleotide sequence of the H7 gene
was most closely related to that of A/Northern Shoveler/Mississippi/
09OS643/2009 (H7N7) virus, with 97% sequence similarity. This
wild bird virus was collected as part of routine surveillance, and it

had a typical low-pathogenic cleavage site with no insert. A nucle-
otide phylogenetic analysis (Fig. 3) again showed that the most
closely related virus sequences were primarily from wild birds,
with the most closely related poultry isolate being from a guinea
fowl (H7N9) recovered in Nebraska in 2011.

Protection conferred by vaccination using U.S. H7 vaccines.
Compared to the 100% mortality by day 4 p.c. observed in sham-
vaccinated birds challenged with the Ck/J/12 H7N3 HPAI virus in
the first experiment, chickens vaccinated with the Ck/NY/99, Tk/
UT/95, or Tk/OR/71vaccine experienced no mortality during the
14-day p.c. period (Fig. 4A). Infection of sham-vaccinated chick-
ens resulted in seven deaths on day 2 p.c., two deaths on day 3 p.c.,
and one death at day 4 p.c., resulting in a mean death time (MDT)
of 2.4 days p.c. The group of birds vaccinated with Q/PA/98 dem-
onstrated 90% protection, with one bird dying on day 6 p.c. All
vaccinated groups were significantly protected from mortality,
whereas sham-vaccinated birds were not (P � 0.05). Three weeks
after vaccination, almost all birds receiving AIV antigen demon-
strated an antibody response, with mean HI titers being approxi-
mately 8 log2 units (Fig. 5A) when the challenge Ck/J/12 H7N3
HPAI virus was used as the HI antigen. The exception was the
birds receiving the Q/PA/98 vaccine, which had a mean HI titer of
approximately 4.5 log2 units. However, all groups of vaccinated
birds demonstrated a statistically significant increase of titers fol-
lowing challenge (P � 0.01). On day 2 following challenge, all
sham-vaccinated birds shed significantly more virus by both the
oropharyngeal and cloacal routes (Fig. 6A and B). Only a few birds
vaccinated with either Ck/NY/99, Tk/UT/95, Tk/OR/71, or
Q/PA/98 shed virus at days 2 and 4 p.c., but the Q/PA/98-vacci-
nated group consistently had more birds shedding more virus
than the other groups (Fig. 6A to D).

Protection conferred by vaccination using the Mexican
H7N3 LPAI virus. Sham-vaccinated birds demonstrated 100%
mortality by day 3 p.c. when challenged with Ck/J/12 H7N3 HPAI
virus (Fig. 4b). Eight of these chickens died or were euthanized at
day 2 p.c., and two died at day 3 p.c., with the MDT for the group
being 2.2 days p.c. In contrast, birds receiving the CT/MX/06 vac-
cine were 100% protected from mortality when challenged at 3
weeks postvaccination. Postvaccination titers of antibody to the
challenge virus were evaluated prior to challenge. Median anti-
body titers were determined by the HI assay to be 9 log2 units in
the CT/MX/06-vaccinated group, whereas no antibodies were de-
tected in the sham-vaccinated birds (Fig. 5b). Following challenge,
antibody titers in CT/MX/06-vaccinated birds increased to ap-
proximately 10 log2 units, which was significantly different from
the prechallenge titers. Not unexpectedly, both the incidence and
the level of viral shedding were significantly reduced in the CT/
MX/06-vaccinated birds. Nine out of 10 sham-vaccinated birds
shed detectable levels of virus by the oropharyngeal route at day 2
p.c., and 7/10 birds shed through the cloacal route (Fig. 7). In
sham-vaccinated birds, the mean levels of viral shedding in oro-
pharyngeal and cloacal swabs were determined to be 104.5

EID50s/ml and 102.3 EID50s/ml, respectively. In contrast, 1/10 and
0/10 CT/MX/06-vaccinated birds shed virus on day 2 by the oro-
pharyngeal and cloacal routes, respectively, with the one positive
swab specimen containing 100.9 EID50/ml. On day 4 p.c., 2/10 and
1/10 CT/MX/06-vaccinated birds shed virus by the oral and cloa-
cal routes, respectively, with all titers being 100.9 EID50/ml (data
not shown).

TABLE 2 Virus titers in tissues from chickens infected with the Mexican
H7N3 HPAI virusa

Chicken no.,
expt no.

Virus titer (log10 EID50/g of tissue)

Lung Spleen Heart Brain Muscle

1, 1 7.1 5.1 6.1 5.1 6.1
2, 2 6.8 5.9 6.5 5.8 5.5
1, 2 7.1 5.7 7.1 6.5 4.7
2, 2 6.3 5.1 5.3 5.5 4.1
a Tissues collected at 2 days postchallenge were homogenized to a 10% (wt/vol) final
concentration. Tenfold dilutions of the 10% homogenates (100 �l) were inoculated
into 10-day-old embryonated chicken eggs (ECE), and virus titers were calculated. The
threshold of detection was 101.9 EID50/g of tissue.
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DISCUSSION

On 21 June 2012, an immediate notification of the isolation of
H7N3 HPAI virus in poultry in Jalisco, Mexico, was submitted to
the World Organization for Animal Health (International Office
of Epizootics). The virus was primarily isolated from egg-laying
commercial birds, with no backyard birds and a few wild birds
being infected. Although the origins of the original index case
remain unknown, H7N3 LPAI virus had been isolated from wild
birds in previous years in Canada, Mexico, and the United States,
leading to the conclusions that this was a wild-bird-origin LPAI
virus transmitted to poultry and mutating to an HPAI virus (16–
18, 27). While the outbreak has been contained to that region, no
information regarding the circulation of H7N3 LPAI virus in

poultry prior to detection of the HPAI virus is available. To date,
greater than 11 million birds have died and another 10 million
were destroyed during the event. Approximately 166 million doses
of inactivated H7N3 vaccine have been applied to poultry to curb
the outbreak (16). The surveillance and epidemiological investi-
gation yielded greater than 81,000 samples for testing from the
region, with 44 positive H7N3 HPAI virus isolations being from
commercial layers and 2 being from wild birds (a common grackle
[Quiscalus quiscula] and a barn swallow [Hirundo rustica]). The
outbreak was thought to have been contained with no new out-
breaks for almost 4 months, but new outbreaks in poultry were
reported in January 2013, indicating a need for further control and
surveillance (28).

FIG 3 Phylogenetic tree illustrating the similarity between the nucleotide sequences of the H7 HA gene from the isolates used in these studies (arrows). Sequences
were aligned with the Clustal V program (Lasergene, version 10.0; DNAStar, Madison, WI). Phylogenetic analysis for the H7 gene was performed with PAUP*,
version 4.0b10 (Sinauer Associates, Inc., Sunderland, MA), using the maximum parsimony tree-building method with heuristic search and 500 bootstrap
replicates.
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In these studies, the Mexican 2012 H7N3 HPAI virus produced
severe clinical disease, lesions, and high mortality, similar to the
findings reported for other HPAI viruses (29–32). However, re-
spiratory signs were more prominent than previously described
for other HPAI viruses. The Asian lineage H5N1 HPAI viruses
have a major vascular endothelial cell tropism, and generalized
circulatory collapse is considered the most important mechanism
involved in production of disease and sudden death. Other HPAI
viruses, including the 1994 Australian H7N3, 1999-2000 Italian
H7N1, and 1991 England H5N1 avian influenza viruses, also
showed vascular endothelial tropism inducing cell death and sub-
sequent production of edema and necrosis (33–39). In our study,
strong staining for virus antigen was observed in the vascular en-
dothelial cells in the nasal epithelium, trachea, comb, and eyelid,
with the consequent edema and hemorrhage. However, virus
staining in the vascular endothelium of other organs and tissues
was infrequent. This restricted differential tropism for endothelial
cells was also observed with another H7 HPAI virus of the H7N7
subtype (39). In the severely edematous wattle skin of chickens
affected in this outbreak, most endothelial cells contained virus
antigen, while in all other tissues, virus antigen was detected in
only a few endothelial cells (39). In our study, the extensive virus
replication in the vascular endothelial cells and epithelial cells of

the upper respiratory tract of the chickens also explains the severe
respiratory signs observed in the infected birds, including the co-
pious nasal discharge and the resulting gasping, dyspnea, and suf-
focation.

The Ck/J/12 virus had a hemagglutinin insert that led to the
highly pathogenic phenotype. All characterized HP H7 viruses
have insertions of 2 to 10 additional amino acids at the cleavage
site. The mechanism for these introductions appears to be the
result of homologous or nonhomologous recombination (8, 15,
40, 41). The Ck/J/12 virus had an insert of 24 nucleotides, or 8
amino acids (aa), that was consistent with the sequences of viruses
responsible for recent HP H7 virus outbreaks from Canada (8-aa
insert) and Chile (10-aa insert) (8, 15). The source of the insert at
the cleavage site for H7 viruses appears to be the host’s (chicken’s)
28S rRNA on the basis of the 100% sequence homology. The
source of the insert of the previously described Canadian and
Chilean viruses was from genes from the same virus, the matrix
and nucleoprotein genes, respectively. However, a laboratory-de-

FIG 4 Kaplan-Meier survival plots for challenge experiments I and II. (A)
Percent survival versus day postchallenge with A/Ck/Jalisco/CPA1/2012 H7N3
HPAI virus for groups vaccinated with U.S. isolates A/turkey/Utah/24721-10/
1995 (H7N3), A/turkey/Oregon/1971 (H7N3), A/chicken/New York/12273-
11/1999 (H7N3), and A/quail/Pennsylvania/20304/1998 (H7N2). (B) Birds
vaccinated with A/Cinnamon Teal/Mexico/2817/2006 (H7N3) and challenged
with A/chicken/Jalisco/CPA1/2012. Statistical significance in survival curves
between the sham-vaccinated and vaccinated groups was determined by the
log-rank (Mantel-Cox) test (P � 0.05).

FIG 5 Individual (log2) pre- and postchallenge HI titers for groups in exper-
iments I (A) and II (B). Birds in experiment I were vaccinated with a single dose
at 7 weeks of age and challenged at 10 weeks of age. Serum was taken from
survivors at 2 weeks p.c. Birds in experiment II received a single vaccination at
2 weeks of age and were challenged at 5 weeks of age. Serum was taken from
survivors at 2 weeks p.c. Statistical significance between mean titers was deter-
mined by ANOVA using Tukey’s multiple-comparison test (P � 0.05).
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rived mutant that had an HP phenotype with an insert of 28S
rRNA has also been described (40).

Vaccines for AIV and their field application can be an effective
tool within a comprehensive control program that includes edu-
cation, enhanced biosecurity (including quarantine, cleaning and
disinfection, movement controls for poultry, etc.), diagnostics
and surveillance, elimination of infected poultry, and potentially
decreased poultry susceptibility (i.e., after vaccination) (42). One
of the goals of this study was to evaluate both Mexican and U.S. H7
LPAI viruses as potential vaccines for control of the H7N3 HPAI
virus. Administration of a single dose of inactivated vaccine to
birds conferred immunity against lethal challenge with the Mexi-
can H7 HPAI virus. While all vaccines protected against challenge,
the Q/PA/98 isolate offered the least protection, which prior to
challenge correlated with decreased HI titers against the challenge
virus when using the challenge virus as the antigen in the test. This
group also demonstrated the highest incidence of shedding
among all vaccinated groups. Since the HA contents of all vaccines
were equal, differences in protection, titers, and shedding cannot
be attributed to differences in antigen load in the vaccine. The HA
sequence of this vaccine isolate shared the least similarity to the
HA sequence of the challenge virus, corroborated by the low an-
tigenic relatedness, and it is known that greater genetic similarity
between HAs of vaccine and field viruses results in reduced mor-
tality and shedding (43–45). Thus, minor antigenic differences
between the isolates likely contributed to decreased protection in
this group. We have previously demonstrated that inactivated H5
vaccines provided protection and reduced shedding when the HA

sequences differed by up to 13% (46–48). In those studies, the
isolates used were collected over a 38-year period, yet they still
provided protection against recent HPAI virus. More recently,
Abbas et al. also demonstrated that many different H7 isolates
from different countries could provide protection against differ-
ent Pakistani H7N3 HPAI viruses (49). Taken together, our results
support previous findings that vaccines better matched to field
isolates provide increased protection and decrease the risk of
transmission by limiting virus shedding.

The efficacy of these vaccines was tested at 21 days postvacci-
nation, which is typical for experimental vaccines to allow adap-
tive immune stimulation. Although the birds affected in the
outbreak were laying hens (egg type), we also tested broiler (meat-
type) birds with the U.S. isolate vaccines to determine if there was
a difference in response on the basis of the type of chicken in-
volved. The results demonstrated that three of the isolates, includ-
ing the two USDA master seeds previously used as part of a vaccine
bank, protected against challenge with this isolate. Although we
tested only a single dose, layer-type birds typically require booster
vaccinations with inactivated vaccines because they live longer.
We have previously demonstrated that multiple vaccine applica-
tions reduced virus shedding in turkeys challenged with H7N2
LPAI virus (22). Whether the vaccines constructed here induce
protective immunity at times earlier than 3 weeks remains to be
determined, as does the duration of immunity.

In summary, we have described the pathobiological character-
istics of the new HPAI virus Ck/J/12 in chickens and determined
its tissue tropism. Unlike H5N1 HPAI virus, the H7N3 virus in-

FIG 6 Isolation of the Ck/J/12 H7N3 HPAI virus from chickens in experiment I. Birds were vaccinated with a single dose containing 512 HA units of inactivated
Tk/UT/95, Tk/OR/71, Q/PA/98, or Ck/NY/99 virus at 7 weeks of age and challenged with Ck/J/12 virus at 10 weeks of age. Oropharyngeal (A and C) and cloacal
(B and D) swab specimens were taken on days 2 (A and B) and 4 (C and D) postchallenge. Viral titers are expressed as the log10 number of EID50s per ml. The lower
limit of detection was 0.9 log10 EID50 per ml.
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duced stronger respiratory signs. In addition, the viral tropism
was less specific for the vascular endothelium, but the virus did
produce a systemic infection with damage to multiple visceral
organs. Sequence analysis clearly determined that this virus is of
North American lineage and contains a previously reported inser-
tion of host 28S rRNA at the HA cleavage site (40). Finally, the
majority of vaccinated birds were shown to be protected from
clinical signs and death and had reduced viral shedding. Thus, the
approved H7 vaccine master seed isolates can be produced for use
in poultry to provide effective options in the event of additional
HPAI H7N3 virus outbreaks.
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